Elecciones en la Sección Local. Real Sociedad Española de Física

Estimados socios,
ha llegado el momento de elegir una nueva junta de dirección de la Sección Local en Asturias de la Real Sociedad de Física. Para ello se convocan elecciones para el día 10 de Abril de 2015. A partir de este momento queda abierta la presentación de candidaturas hasta el día 6 de Marzo de 2015 como fecha límite.

Os animamos a todos aquellos que tengáis interés a poneros en contacto con nostros a través de los medios habituales para obtener más información sobre el proceso.

Real Sociedad Española de Física
Sección Local Asturias.
Departamento de Física
Universidad de Oviedo
Facultad de Geología, 6a Planta, 33007.
Oviedo. T. 985105014
www.rsefas.org rsef.asturias@gmail.com

 

Olimpiada de Física 2014

Hola a tod@s un año más!

Como sabéis, por mandato del Ministerio de Educación, la RSEF todos los años tiene la obligación y el placer de celebrar la Olimpiada Local de Física entre los estudiantes de educación secundaria.

Documentos:

  • [download id=”54″]
  • [download id=”56″]
  • [download id=”55″]
  • [download id=”58″]
  • [download id=”57″]

 

Información sobre ediciones pasadas de la Olimpiada local de Física

http://www.rsefas.org/seccion/olimpiadas-de-fisica/

Formulario de inscripción para la olimpiada local de Física 2014

Participa con nosotros aquí (deshabilitado)

Acto de entrega de premios

Estimados estudiantes y profesores, La Sección Local de Asturias de la Real Sociedad Española de Física os invita a tod@s  al acto de entrega de premios que tendrá lugar en el aula de grados de la Facultad de Ciencias (Calle Calvo Sotelo, s/n, 33007, Oviedo) el viernes 21 de marzo a las seis de la tarde. La entrega de premios contará con la asistencia del Decano de la Facultad de Ciencias (Prof. Norberto Corral), el Director del Departamento de Física (Prof. Agustín Fernández), la Directora General de Formación profesional, desarrollo curricular e innovación (Dña. Sara Alvarez Morán,), el Coordinador de la PAU (Dr. Jesús Daniel Santos), el Presidente de la RSEF-Asturias (Dr. Alejandro Alija).

Examen de la Fase local de la Olimpiada de Física 2014.

  • [download id=”60″]
  • [download id=”61″]**
  • [download id=”62″]
  • [download id=”63″]

**Erratum: Hubo un error al generar el documento de corrección de las cuestiones de la Olimpida Local de Física 2014. En particular, la respuesta correcta a la cuestión No. 18 es la C en lugar de la D como aparecía marcada en la plantilla publicada originalmente. La puntuación de todos los estudiantes fue calculada teniendo en cuenta que la respuesta correcta era la (C) y la plantilla ha sido sustituida.

Clasificación de la Fase local de la Olimpiada de Física 2014

[download id=”64″]

 

Acto de entrega de premios  21 de Marzo de 2014

http://www.lne.es/asturias/2014/03/22/fisica-futuro/1560456.html

Acto de entrega de premios de la Olimpiada local de Física 2014

Acto de entrega de premios de la Olimpiada local de Física 2014

 

 

 

 

 

 

 

Olimpiada Nacional de Física 2014. A Coruña 

http://www.rsef.es/oef/images/Medallero/Medallero2014.pdf 

http://www.rsef.es/oef/index.php/problemas-de-la-oef

Olimpiada de Física 2013

Hola a tod@s un año más!

Como sabéis, por mandato del Ministerio de Educación, la RSEF todos los años tiene la obligación y el placer de celebrar la Olimpiada Local de Física entre los estudiantes de educación secundaria.

Documentos:

  • [download id=”46″]
  • [download id=”47″]

Examen de la Fase local de la Olimpiada de Física 2013 

  • [download id=”49″]
  • [download id=”48″]
  • [download id=”50″]
  • [download id=”51″]
  • [download id=”52″]

Clasificación de la Fase local de la Olimpiada de Física 2013 

[download id=”53″]

 

 

2012 Physics Nobel Prize

Overview

The 2012 Nobel Prize in Physics has been awarded to Serge Haroche of Collège de France and Ecole Normale Supérieure in Paris,

France, and David J. Wineland of the National Institute of Standards and Technology (NIST) and University of Colorado Boulder, Colo., USA “for groundbreaking experimental methods that enable measuring and manipulation of individual quantum systems.”

In the quantum world, the general understanding is that to measure a single quantum particle will destroy that particle Haroche’s method required trapping photons—individual particles of light—and measuring their quantum properties by sending atoms through the trap.

 

 

Wineland approached the problem from the other direction,

trapping electrically charged atoms and measuring their properties with light particles. The results of their work have led to highly precise atomic clocks and provides a foundation that may one day make quantum computing a reality.. These two researchers took different approaches to solve this unique quantum problem, and their efforts have resulted in direct observation of single quantum particles without destroying them.

Higgs within reach

CERN experiments observe particle consistent with long-sought Higgs boson

 

The ATLAS and CMS experiments at CERN today presented their latest results in the search for the long-sought Higgs boson. Both experiments see strong indications for the presence of a new particle, which could be the Higgs boson, in the mass region around 126 gigaelectronvolts (GeV).

The experiments found hints of the new particle by analysing trillions of proton-proton collisions from the Large Hadron Collider (LHC) in 2011 and 2012. TheStandard Model of particle physics predicts that a Higgs boson would decay into different particles – which the LHC experiments then detect.

Both ATLAS and CMS gave the level of significance of the result as 5 sigma on the scale that particle physicists use to describe the certainty of a discovery. One sigma means the results could be random fluctuations in the data, 3 sigma counts as an observation and a 5-sigma result is a discovery. The results presented today are preliminary, as the data from 2012 is still under analysis. The complete analysis is expected to be published around the end of July.

Read the CERN press release→

A proton-proton collision event in the CMS experiment producing two high-energy photons (red towers). This is what we would expect to see from the decay of a Higgs boson but it is also consistent with background Standard Model physics processes. © CERN 2012

source=CERN.ch

VIAJE EXPEDICIÓN ASTURIANA OLIMPIADA NACIONAL DE FÍSICA 2012 (BILBAO – UPV)

Llegamos a Bilbao el viernes por la tarde. El hotel “de concentración” era una vorágine de olímpicos procedentes de todas partes de España. Las caras nuevas se sucedían con tanta velocidad que era casi imposible asociarlas a sus nombres y lugares de origen sin equivocarse. Después de cenar, nos fuimos a descansar, pues debíamos estar frescos para la maratón que nos esperaba al día siguiente.

El sábado por la mañana partimos en tres autobuses hacia la Facultad de Ciencias de la Universidad del País Vasco, anfitriona de la Olimpiada. Después de una breve bienvenida, acompañada de las pautas básicas de funcionamiento, dio comienzo la prueba experimental, que consistía en calcular la constante de Planck (h) a partir de la tensión umbral de una colección de LEDs de diferentes colores; fueron cuatro horas de ardua batalla, durante las que varios fusibles resultaron heridos de gravedad. Tras una breve pausa para reponer fuerzas en la cafetería, pasamos a la prueba teórica, consistente en tres problemas referidos, respectivamente, a la cinemática de un saltador de esquí, un electrómetro para medir la radiación terrestre y un giróscopo interferencial de fibra óptica (Pronto todas las pruebas con sus correspondientes soluciones estarán colgadas en la Web de la real sociedad de física: www.rsef.org/oef).

 

Esa noche, nos dimos una merecida tregua y, aunque se notaba el cansancio acumulado, salimos a conocer la noche bilbaína con nuestros compañeros.

 

La mañana del domingo la dedicamos a recorrer Bilbao; fuimos en metro hasta la desembocadura de la Ría, paseamos por el barrio de Getxo hasta el Puerto Viejo y admiramos el puente colgante de Portugalete, inaugurado en 1893 y reconocido como Patrimonio de la Humanidad por la Unesco.

 

 

Por la tarde, visitamos el museo Guggenheim que, aunque en su interior alberga importantes colecciones de arte contemporáneo, nos impresionó por su imponente estructura de titanio, diseñada por el fís… ¡arquitecto! Frank Gehry.

 

 

Aunque esa noche los nervios nos complicaron conciliar el sueño, el lunes nos levantamos deseosos de conocer por fin los resultados de la prueba. Al final del acto de entrega de premios, presidido por diversas autoridades, entre las que se encontraban los responsables de la Facultad de Ciencias y de la Universidad del País Vasco, los organizadores de la Olimpiada y la presidenta de la Real Sociedad de Física, se fueron desvelando, poco a poco y en orden ascendente, los ganadores, hasta llegar al momento culminante en que sabríamos quiénes nos representarían en las Olimpiadas Internacional e Iberoamericana. ¡Y cuál fue nuestra sorpresa y alegría al saber que David se contaba entre los primeros (http://www.lne.es/gijon/2012/04/24/alumno-jovellanos-logra-medalla-oro-olimpiada-nacional-fisica/1232059.html) y que Alejandro también había obtenido una mención de honor! Como tantas emociones seguidas nos habían abierto el apetito, nos sirvieron un vino español, con abundantes pinchos y pasteles. Después, nos despedimos de nuestros compañeros y nos dispusimos a emprender el viaje de vuelta a casa.

 

Han sido tres días llenos de esfuerzo, emoción y nuevas experiencias, así que muchas gracias a todos por compartirlos con nosotros, enhorabuena a los tres, porque haber representado a Asturias en esta Olimpiada era ya un gran éxito, ¡Y mucha suerte en Tallín, David! ;)

Smoke is in the air: how fireworks affect air quality

Smoke is in the air: how fireworks affect air quality

 

RSEFAS would like to acknowledge Science in School (scienceinschool.org) for this nice article.

Submitted by sis on 22 November 2011
image
Chikugo river fireworks festival in Kurume, Fukuoka, Japan, 5 August 2011
Image courtesy of Kurume-Shimin; image source: Wikimedia Commons
Did you realise that fireworks cause measurable air pollution? Tim Harrison and Dudley Shallcross from Bristol University, UK, explain how to investigate atmospheric pollutants in class.

Whether at New Year, on Guy Fawkes Night or at Diwali, most of us have witnessed a firework display – and remembered the explosions and showers of coloured light. What about the sulphurous smoke though? As atmospheric scientists have demonstrated, fireworks leave their mark on air quality for some time after the bangs and glows have passed.

After the annual Guy Fawkes Night in the UK, highly elevated levels of particles (smoke or soot) produced by the fireworks’ combustion, as well as high levels of metal ions such as magnesium that originate from the fireworks themselves, have been found. Firework displays have also been linked to elevated levels of other molecules such as nitrogen dioxide (NO2) and sulphur dioxide (SO2). Such observations were made during and after a Diwali festival in Hisar City, India, in November 1999; in Mainz, Germany, during New Year celebrations in 2004/2005; during the Lantern Festival in Beijing, China, in 2006; and in Milan, Italy, the night after Italy won the football World Cup in 2006 (Drewnick et al., 2006;Ravindra et al. 2003Vecchi et al., 2008Wang et al., 2007).

Investigating air quality at school

Together with your students, you too can analyse the effect of fireworks on air quality. We worked with UK secondary-school students to investigate the impact of Guy Fawkes Night on air quality (see acknowledgements). The project was an introduction to using air-quality databases – which contain measurements of a wide range of pollutants, a treasure trove of data for use in schools – but also a chance to carry out some real research at school.

Air quality can be linked to many school subjects. The chemistry and physics of fireworks involve a number of interesting topics, such as combustion, sound, light and the pollutants they can release. It can also form the basis of a deeper discussion of the nature of air pollution; what causes it, and effects such as acid rain and climate change. The latter are topics covered in biology, health and geography lessons. The analysis of data has huge potential for enlivening mathematics and IT lessons.

Information about the main pollutants caused by fireworks, as well as details of the chemistry of fireworks, can be downloaded from the Science in School websitew1. Further details on more general causes of air pollution can be downloaded from the UK-AIR websitew2.

image
A beautiful sunset over Mumbai, India, caused by particulate matter in the air
Image courtesy of Bm1996; image source: Wikimedia Commons

Databases

image
Fireworks at the Nagaoka festival, Japan
Image courtesy of Kropsoq; image source: Wikimedia Commons
You will need to use a publicly available air-quality database that provides at least daily measurements for the location you are interested in studying. The UK air-quality archivew2 contains hourly data for a range of chemical species; primary pollutants (emitted directly), including NO, NO2, CO and SO2; hydrocarbons and particulate matter; and secondary pollutants (formed from primary pollutants), such as ozone. The data are collected from 186 sites around the UK ranging from monitors at the roadside to those in remote regions for measuring background levels. Some sites have been working since the mid-1970s, providing an incredible record of data. The authors are keen to work with any groups of students who wish to interpret aspects of the UK’s air-quality data.

For Malta, there is the database of the Malta Environment and Planning Authorityw3 that contains data on CO, NO, NO2 and O3.

If you want to analyse data from another European country, you will find AirBasew4, the air-quality database maintained by the European Environment Agency, a useful resource as it contains measurements for most European countries. Note, however, that the files are large so can take some time to download, and are also less simple to understand than the UK and Maltese data sets.

Our results

We analysed particulate matter (PM) levels at all sites where they are measured in the UK around Guy Fawkes Night 2009. PM consists of particles of solid or liquid suspended in a gas. They are categorised according to size as PM10 (diameter 10 µm or less), PM2.5 (2.5 µm or less), PM1 (1 µm or less) and ultrafine (0.1 µm or less). Firework combustion produces a range of particle sizes but mainly smaller particles (e.g. PM2.5) of soot, whereas bonfires can form larger particles. PM is also produced by the construction industry, and there are natural sources such as pollen, sea salt and wind-blown soil. Increased levels of particles in the air are linked to cardiovascular and respiratory diseases; smaller particles are particularly unhealthy because they can penetrate deeper into the respiratory system. PM also has a significant effect on the climate: soot particles warm the climate, whereas reflecting articles tend to cool it. image
New Year fireworks, 2010/2011, in Prague, Czech Republic
Image courtesy of Karelj; image source: Wikimedia Commons

As an example (Figure 1), we show PM2.5 and PM10 levels from the centre of Reading, a university town in the south of the UK. Although Guy Fawkes Night is actually on 5 November, it is frequently celebrated on the nearest weekend. These data from 5-9 November 2009 show that particle levels peaked on the evening of 7 November (a Saturday). Comparing those data to the all-year average for 2009, we found that the levels on that Saturday were elevated by a factor of up to seven (see Figure 1).

image
Figure 1: PM10 and PM2.5 levels from Reading town centre, UK: levels on 7 November 2009, and the average levels for 2009.
Blue: PM2.5 on 7 November 2009; red: PM10 on 7 November 2009; green: PM2.5 average for 2009, purple: PM10 average for 2009
.
Click on image to enlarge
Image courtesy of Tim Harrison and Dudley Shallcross

Because PM2.5 measures all particles with a diameter of 2.5 μm or less and the PM10 and PM2.5 levels are virtually the same, most particles produced were small – and particularly bad for the respiratory system. It is very difficult to set safe levels for particle exposure, but at present the limit for PM10 in Europe is an annual concentration of 40 μg/m3, and a daily concentration of 50 μg/m3, which must not be exceeded more than 35 times per calendar year (therefore called the exceedance). The average from the night of 7 November was 34.7 μg/m3, which is less than the exceedance, but much higher than the 2009 average (mean). At other sites in the UK, we found the PM10 level to be exceeded on that day.

Investigations

These databases offer a wealth of possible questions to be considered at school, with examples by no means restricted to firework-derived pollution. For example:

  • Plot the levels of several different pollutants before, during and after a firework event (e.g. New Year). Which pollutants peak first? Which take longer to peak? Are the levels of all measured pollutants affected? Why / why not?
  • Using data from different sites monitored in the database, compare levels of specific pollutants (e.g. carbon monoxide) between cities and countryside. What explanations can you find for what you observe?
image
A photomontage of eight images of fireworks from a Guy Fawkes Night display at Roundwood Park in Harlesden, London, UK
Image courtesy of Billy Hicks; image source: Wikimedia Commons
  • What differences are there in ozone levels from different locations and at different times of day?
  • In Europe the prevailing wind is from the west. Can you detect any pattern in air quality from east to west?

Acknowledgements

The authors would like to acknowledge the help of the following teachers and students who participated in their UK air-quality study: Dr Oznur Kemal (teacher), Sophie Danby, Marta Tondera, Kelly Lam Ho, Candice Chan Ting Yan, Boni Chau Bo, Jenny Chow Kar Yee, Christine Fong Chi, Sophie Hawkins, Charlotte Hooper, Annabelle Fricker, Siobhan Stewart and Emma Tremewan, from Leweston School Dorset; Naomi Shallcross, Beth Shallcross and Esther Shallcross from Gordano School, Portishead; John Jones (teacher), Beth Jones and Cat Wood from Cheltenham College, Cheltenham.

References

Drewnick F et al. (2006) Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment 40: 4316-4327. doi: 10.1016/j.atmosenv.2006.03.040

Ravindra K, Mor S, Kaushik CP (2003) Short-term variation in air quality associated with firework events: a case study. Journal of Environmental Monitoring 5: 260-264. doi: 10.1039/B211943A

Vecchi R, et al. (2008) The impact of fireworks on airborne particles.Atmospheric Environment 42: 1121-1132. doi: 10.1016/j.atmosenv.2007.10.047

Wang Y, et al. (2007). The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment 41: 417-431. doi:10.1016/j.atmosenv.2006.07.043

Web references

w1 – Supporting information on the chemistry of fireworks can be downloaded here in Word or PDF format.

w2 – The UK-AIR website hosts an extensive data archive, as well as plenty of information about air pollution. See: http://uk-air.defra.gov.uk

w3 – For air-quality data in Malta, see: www.mepa.org.mt/airquality

w4 – To download air-quality data from the European Environment Agency’s AirBase, see: www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-3

Resources

Russell MS (2000) The Chemistry of Fireworks. Cambridge, UK: The Royal Society of Chemistry. ISBN 0-85404-598-8

If you enjoyed this article, why not browse the full list of articles on chemistry topics published in Science in School? See: www.scienceinschool.org/chemistry


Dudley Shallcross (d.e.shallcross@bristol.ac.uk) is the professor of atmospheric chemistry at Bristol University, UK. Tim Harrison (t.g.harrison@bristol.ac.uk) is the outreach director for Bristol ChemLabS at Bristol University. They are frequent authors for Science in School.

Review

All that glitters is certainly not gold. The popular practice of letting off spectacular fireworks, following a football victory or as a full-blown festival spread over several nights, may in fact be contributing to air pollution. This article provides references and ideas for teachers to approach the topic of air pollution by using specific occasions when high levels of gaseous and particulate pollutants are expelled into the air during firework displays. Science students have the opportunity for real-life scientific investigations; rather than confining their experiments to the school laboratory, they are immersed in the scientific community, working to make our environment a better place to live in.

The article could be used in several science subjects: for example, in chemistry (properties and reactions of metallic compounds; burning; stability of compounds; oxidising agents), physics (propulsion; light and sound), or biology or health lessons (the effects of pollution on respiratory diseases, especially asthma). It could also be used interdisciplinarily to consider global warming.

If the school can borrow the necessary equipment – for example, from a university – the school students could even take their own measurements of air quality, which would expose them to the technical analysis of the air, data logging and handling, data comparison and error analysis. They could then perhaps present their findings to the local authority, experiencing for themselves how reliable results of scientific investigations can be used to put pressure on policy makers and potentially bring about improvements.

Angela Charles, Malta


tick box Referee’s recommendations: Chemistry, Physics, Biology, Health, Data-handling techniques, Global warming
Ages 14+
Copyright: attribution Copyright: non-commercial Copyright: share and share alike No endorsement